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Problem 1. Consider the following claim:

lim
x→−∞

1

x
= 0.

(1). Make a sketch of the graph of the function f(x) = 1
x
and determine, based on that

graph, if the above claim makes sense. (An intuitive conclusion without rigorous proof is
sufficient for full credit.)

Space for your solution:

As x approaches −∞, the value of 1
x
does indeed approach 0, thus making it intuitively

clear that the statement about limit is correct:

−1 1

−1

x

y

(2). Using the definition of limit, express the above claim as a precise statement of predi-
cate logic.

Space for your solution:

Specializing the general definition of limit at −∞:(
lim

x→−∞

(
f(x)

)
= L

)
⇔

∀ε > 0

(
∃M > 0

(
∀x
(
x < −M ⇒

∣∣∣f(x)− L
∣∣∣ < ε

)))
to our case, we get: lim

x→−∞

(
1

x

)
= 0

 ⇔

∀ε > 0

(
∃M > 0

(
∀x
(
x < −M ⇒

∣∣∣ 1x∣∣∣ < ε
))).
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(3). Using the rigorous and precise definition of the limit from the previous subproblem,
prove or disprove the statement

lim
x→−∞

1

x
= 0.

Space for your solution: lim
x→−∞

(
1

x

)
= 0

 ⇐ definition of limit from the previous subproblem ⇒

∀ε > 0

(
∃M > 0

(
∀x
(
x < −M ⇒

∣∣∣ 1x∣∣∣ < ε
))) ⇐ 1

x
< 0 since x < −M < 0 ⇒

∀ε > 0

(
∃M > 0

(
∀x
(
x < −M ⇒ − 1

x
< ε
))) ⇐multiply both sides by x ⇒

∀ε > 0

(
∃M > 0

(
∀x
(
x < −M ⇒ −1 > x · ε

))) ⇐ divide both sides by ε ⇒

∀ε > 0

(
∃M > 0

(
∀x
(
x < −M ⇒ −1

ε
> x

))) ⇐ reverse the inequality ⇒

∀ε > 0

(
∃M > 0

(
∀x
(
x < −M ⇒ x < −1

ε

))) ⇐ exclude x ⇒

∀ε > 0

(
∃M > 0

(
−M ≤ −1

ε

)) ⇐ explicit witness for existential quantifier ⇒

∀ε > 0

(
∃M > 0

(
M = 1

ε

)) ⇔ TRUE.
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Problem 2. Relying on the limit of composition theorem and the knowledge of asymptotic
behavior of 1

x
at −∞ find

lim
x→−∞

5x7 − 3x5 + 2x3

6x7 + 2x+ 1
.

(You must show how the result follows from the things you may rely on; the answer alone is
not sufficient.)

Space for your solution:

This limit is the case of ∞
∞ indeterminacy. Therefore, finding the limit requires cancellation

of the main terms of each ∞:

lim
x→−∞

5x7 − 3x5 + 2x3

6x7 + 2x+ 1
=

= factor out the main terms of the numerator and denominator =

lim
x→−∞

x7(5− 3
x2 +

2
x4 )

x7(6 + 2
x6 +

1
x7 )

=

= cancel the main terms =

lim
x→−∞

5− 3
x2 +

2
x4

6 + 2
x6 +

1
x7

= lim
x→−∞

5− 3 · ( 1
x
)2 + 2 · ( 1

x
)4

6 + 2 · ( 1
x
)6 + ( 1

x
)7

=

= limit of composition theorem =

5− 3 ·
(

lim
x→−∞

1

x

)2

+ 2 ·
(

lim
x→−∞

1

x

)4

6 + 2 ·
(

lim
x→−∞

1

x

)6

+

(
lim

x→−∞

1

x

)7

= asymptotic behavior of
1

x
as x → −∞ =

5− 3 · 0 + 2 · 0
6 + 2 · 0 + 0

=
5

6
.
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Problem 3. Find d e
sin(x)+cos(x2)

dx
.

Space for your solution:

d esin(x)+cos(x2)

dx
= chain rule =

d esin(x)+cos(x2)

d
(
sin(x) + cos (x2)

) ·
d
(
sin(x) + cos (x2)

)
dx

= derivative of exponent, derivative of sum =

esin(x)+cos(x2) ·
( d sin(x)

dx
+

d cos (x2)

dx

)
= derivative of sin, chain rule =

esin(x)+cos(x2) ·
(
cos(x) +

d cos (x2)

d (x2)
· d (x2)

dx

)

= derivative of cosine, derivative of power =

esin(x)+cos(x2) ·
(
cos(x)− 2x · sin

(
x2
) )

.
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Problem 4. Find d
dx
arccot

(
ex

x+
√
x

)
.

Space for your solution:

d

dx
arccot

(
ex

x+
√
x

)
= chain rule =

d arccot
(

ex

x+
√
x

)
d
(

ex

x+
√
x

) ·
d
(

ex

x+
√

x

)
dx

= derivative of arccot and of quotient =

= − 1

1 +
(

ex

x+
√
x

)2 ·

(
d
dx
ex
)
·
(
x+

√
x
)
− (ex) ·

(
d
dx

(
x+

√
x
))

(
x+

√
x
)2 =

= derivative of exponent and of sum =

= − 1

1 +
(

ex

x+
√
x

)2 ·
ex ·

(
x+

√
x
)
− ex ·

(
d
dx
x+ d

dx

√
x

)
(
x+

√
x
)2 =

= derivative of x and of
√
x =

= − 1

1 +
(

ex

x+
√
x

)2 ·
ex ·

(
x+

√
x
)
− ex ·

(
1 + 1

2
√
x

)
(
x+

√
x
)2 .
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Problem 5. Find the maximum value and the point(s) of maximum of the function
f(x) = 3x3 − x on the interval [−1, 0], if they exist.

Space for your solution:

The function f(x) is a polynomial defined on a closed interval, Thus, being a continuous
function on a compact set, it has a maximum and a minimum, as well as point(s) of
maximum and minimum, on that set.

All internal points with non-zero derivative can be ruled out: they are neither the points
of maximum, nor the points of minimum, of the function in question. All other points,
namely:

• the end points of the interval,

• the points where the derivative d
dx
f(x) is undefined, and finally

• the points where the derivative d
dx
f(x) is defined and equals to zero,

will be examined one by one to identify the point(s) of maximum among them.

In our case,

• the end points of the interval are x1 = −1 and x2 = 0,

• the derivative
d(3x3−x)

dx
= 9x2 − 1 is defined everywhere on the interval [−1, 0], and

• solving for the points of the interval [−1, 3] where the derivative is zero:{
9x2 − 1 = 0
−1 ≤ x ≤ 0

⇔
{

x2 = 1
9

−1 ≤ x ≤ 0
⇔


[
x = 1

3

x = −1
3

−1 ≤ x ≤ 0
⇔ x = −1

3
, we

get the last suspect x3 = −1
3
.

Thus the complete list of suspects is: x1 = −1, x2 = 0, x3 = −1
3
. The values of the

function f(x) at these points are:

f (−1) = −2, f (0) = 0, f

(
−1

3

)
=

2

9
.

The maximum of those numbers is f
(
−1

3

)
= 2

9
. Therefore the point of maximum is

x = −1
3
and the maximum value is 2

9
.
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Problem 6. Suppose B is a celestial body of mass M , and x is a position in space,
somewhere away from the B. A vector v starting at x will be called an escape velocity of
B at x if any projectile starting at x with the initial velocity v will leave the gravitational
pull of B. (We assume that once the projectile is given its initial velocity, it moves inertially
without receiving any external impulse or force, other than the force of gravity from B.) It
turns out that for any such B and x, escape velocities always exist.

The shortest escape velocity v pointing radially away from B is called the escape velocity
of B at x. The length of the escape velocity at x depends only on the mass M of B and
the distance r0 of x from the B. (It does not depend on the mass m of the projectile, or the
specific position x.) Since we know the direction of the escape velocity, we will only concern
ourselves with its length (but will still call it the escape velocity rather than escape speed).

In this problem we will find the escape velocity of the Solar System for a projectile
launched from a low Earth orbit.

(1). The Newton’s law of gravity F = G · M ·m
r2

describes the force of gravity F (in Newtons)

in terms of the gravitational constant G = 6.67 ·10−11 · m3

kg·s2 , the masses M and m of the two

attracting bodies (in kilograms), and the distance r between them (in meters). Compute the
work W =

∫ +∞
r0

F (r) dr done against the force of gravity F of the celestial object B when
moving a projectile of mass m radially away from B starting a distance r0 from the B to
infinity.

Space for your solution:

W =

∫ +∞

r0

F (r) dr =

∫ +∞

r0

G·M ·m
r2

dr = G·M ·m
∫ +∞

r0

dr

r2
= G·M ·m

∫ +∞

r0

d

(
−1

r

)
=

G ·M ·m ·
(
−1

r

)∣∣∣∣+∞

r0

= G ·M ·m ·
(
− 1

+∞
+

1

r0

)
=

G ·M ·m
r0

.

(2). As the projectile escapes the gravitational pull of B, it uses up its kinetic energy
E = m·v2

2
to do work against the force of gravity F . Thus in order for the projectile’s

speed to be sufficient for escaping the gravitational pull of B, the initial kinetic energy
E of the projectile must equal to the work W computed above. Use this and the formula
for W found in the previous sub-problem to derive the formula for the escape velocity v 1.

Space for your solution:

Solving the equation W = E for the speed v, we get:

W = E ⇐ use the expression for W from the previous problem ⇒

G·M ·m
r0

= m·v2
2

⇔ v =
√

2GM
r0

.

1Since we know the direction of the escape velocity — away from the celestial object — what we are
really looking for is the speed, i.e. the length of the velocity.
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(3). Assume that the mass of the Solar System equals the mass of the Sun and is positioned
at the center of the Sun2. The distance from Earth to the Sun is 1.49597870700 ·1011 ·m, and
the mass of the Sun is 1.989 · 1030 · kg. Compute the minimal speed of a projectile launched
from a near Earth orbit, sufficient for escaping the gravitational pull of the Solar System.
Assume that the distance of the projectile from the Solar System is the distance from Earth
to the Sun.

Space for your solution:

v =

√
2GM

r0
=

√
2 · 6.67 · 10−11 · m3

kg·s2 · 1.989 · 1030 · kg
149, 597, 870, 700 ·m

=√
2 · 6.67 · 10−11 · m3

kg·s2 · 1.989 · 1030 · kg
1.49597870700 · 1011 ·m

=

√
2 · 6.67 · 1.989
1.49597870700

· 104 · m

s
≈

42, 115 · m

s
≈ 42 · km

s
.

2It is not much of an error, since the Sun accounts for about 99.8% of the total mass of the Solar System.
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